Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Authors
Abstract:
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that random effects have Gaussian distribution, but the assumption is questionable. This assumption is replaced in the present work, using a skew Gaussian distribution for the latent variables, which is more flexible and includes Gaussian distribution. We examine the proposed method using a real discrete data set.
similar resources
Estimation and Prediction for Spatial Generalized Linear Mixed Models Using High Order Laplace Approximation
Estimation and prediction in generalized linear mixed models are often hampered by intractable high dimensional integrals. This paper provides a framework to solve this intractability, using asymptotic expansions when the number of random effects is large. To that end, we first derive a modified Laplace approximation when the number of random effects is increasing at a lower rate than the sampl...
full textParameter Estimation for Mixtures of Generalized Linear Mixed - effects Models
Finite mixtures of simpler component models such as mixtures of normals and mixtures of generalized linear models (GLM) have proven useful for modelling data arising from a heterogeneous population, typically under an independence assumption. Mixed-effects models are often used to handle correlation as arises in longitudinal or other clustered data. In Chapter 3 of this dissertation, we present...
full textRandom Effects in Generalized Linear Mixed Models
In this chapter, we examine the use of special forms of correlated random e ects in the generalized linear mixed model (GLMM) setting. A special feature of our GLMM is the inclusion of random residual e ects to account for lack of t due to extra variation, outliers and other unexplained sources of variation. For random e ects, we consider, in particular, the correlation structure and improper p...
full textBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
full textEstimation in Generalized Linear Models with Heterogeneous Random Effects
The penalized quasi-likelihood (PQL) approach is the most common estimation procedure for the generalized linear mixed model (GLMM). However, it has been noticed that the PQL tends to underestimate variance components as well as regression coefficients in the previous literature. In this paper, we numerically show that the biases of the variance components are systematically related to the bias...
full textOn estimation and prediction for spatial generalized linear mixed models.
We use spatial generalized linear mixed models (GLMM) to model non-Gaussian spatial variables that are observed at sampling locations in a continuous area. In many applications, prediction of random effects in a spatial GLMM is of great practical interest. We show that the minimum mean-squared error (MMSE) prediction can be done in a linear fashion in spatial GLMMs analogous to linear kriging. ...
full textMy Resources
Journal title
volume 14 issue 2
pages 157- 169
publication date 2018-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023